
Carnegie Mellon
Software Engineering Institute

Builder's Guide
for WaterBeans
Components

Daniel Piakosh
Dennis Smith
Kurt C. Wallnau

December 1999

TECHNICAL REPORT
CMU/SEI-99-TR-024

ESC-TR-99-024

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

20000204 132
1

 CarnegieMellon
«jar Software Engineering Institute

Pittsburgh, PA 15213-3890

Builder's Guide
for WaterBeans
Components
CMU/SEI-99-TR-024
ESC-TR-99-024

Daniel Plakosh
Dennis Smith
Kurt C. Wallnau

December 1999

Dynamic Systems

Unlimited distribution subject to the copyright.

DTK! QÜAEOTT mePBOTBB x

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the Environmental Protection Agency and the U.S. Department of Defense. The
Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 1999 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

... *'•>

Table of Contents

Preface vii

Abstract ix

1 Background 1

2 Introduction 3

3 Motivation for the Custom Component
Model 5

4 Component Specification 7

4.1 Fundamentals 7

4.2 Common Data Types 8

4.3 Exported Functions 9

4.3.1 Introspection
4.3.1.1 GetComponentlnfo
4.3.1.2 Getlnputlnfo and

GetOutputMo
4.3.1.3 GetNumPropertiesC
4.3.1.4 GetPropertyDescriptionC

9
9

11
12
12

4.3.2 Data Transfer
4.3.2.1 SetlnputCallBack and

SetOutputCallBack
4.3.2.2 GetPassivelnputCallBack

13

14
15

4.3.2.3 GetlnputRun Requirements 17

4.3.3 Persistence
4.3.3.1 GetPersistence
4.3.3.2 PutPersistence

17
17
18

4.3.4 Property Manipulation
4.3.4.1 GetPropertyC
4.3.4.2 SetPropertyC
4.3.4.3 PropertyEditor

19
19
20
21

4.3.5 Control
4.3.5.1 Initialize
4.3.5.2 Execute

21
22
22

CMU/SEI-99-TR-024 i

4.3.5.3 SetPropertyChangedCBC 22
4.3.5.4 GetNewInstance 23
4.3.5.5 Deletelnstance 24
4.3.5.6 Display 24

5 Visual Programming Environment 27

6 Summary 29

Appendix: Component Header File 31

CMU/SEI-99-TR-024

List of Figures

Figure 1: TComponentlnfo Structure 9
Figure 2: TlOInfo Structure 11
Figure 3: TCPropertyDescription Structure 13
Figure 4: TGetorPutDataCBInfo Structure 14
Figure 5: TCProperty Value Structure 19
Figure 6: TPropertyChangedCBInfo Structure 23
Figure 7: WaterBeans Visual Composer 28

CMU/SEI-99-TR-024

iv CMU/SEI-99-TR-024

List of Tables

Table 1

Table 2
Table 3
Table 4
Table 5

Common Data Types and Constants 8
Description of TComponentlnfo Fields 10
Description of TlOInfo Fields 12
Definition of TCPropertyDescription Fields 13
Description of TCProperty Value Fields 20

CMU/SEI-99-TR-024

Vl CMU/SEI-99-TR-024

Preface

This paper describes WaterBeans, a proof-of-feasibility system for building software applica-
tions through a process of assembling prefabricated software components. WaterBeans was
originally developed for the U.S. Environmental Protection Agency (EPA) as a proof of fea-
sibility that software component technology could be used to develop software applications
in the domain of water-quality modeling. This paper builds on the original WaterBeans con-
tribution. It documents the programming interface for component developers and provides a
brief description of the composition environment.

CMU/SEI-99-TR-024 vii

viii CMU/SEI-99-TR-024

Abstract

WaterBeans is a proof-of-feasibility system for building software applications through a pro-
cess of assembling (composing) prefabricated software components. WaterBeans was origi-
nally developed as a proof of feasibility that software component technology could be used to
develop software applications in the domain of water-quality modeling. (In particular, Wa-
terBeans supports modeling and simulating the hydrology of urban storm water sewage and
runoff.) WaterBeans includes a component model for component developers, a visual compo-
sition environment for importing and assembling components into applications, and several
families of components. One family of components supports modeling and simulating urban
sewage systems. Another family of components was developed to prove the generality of
WaterBeans; this family of components allows visualization and manipulation of digital
waveforms. This report documents the programming interface for component developers. It
also provides a brief description of the composition environment.

CMU/SEI-99-TR-024 '*

CMU/SEI-99-TR-024

1 Background

Today most software applications for water-quality modeling are monolithic applications,
consisting of computational modeling engines that are tightly coupled to user interfaces, data
formats, vendor-specific compiler extensions, operating systems, and hardware. Typically the
user interfaces provided with the modeling application are simple, somewhat unfriendly, and
decades behind the current practice in graphical user interface technology and data visualiza-
tion. Due to the lack of sophistication in these user interfaces, users are becoming dissatisfied
with this software and are looking elsewhere (mainly overseas) for software to solve their
water-quality modeling needs. This recent trend has resulted in a high demand for water-
quality modeling applications with advanced user interfaces and sophisticated graphics pres-
entation packages. Because of the difficulty associated with extracting the computational en-
gines from the water-quality modeling software applications, software developers that are
now building products to meet this demand are reluctant to use existing modeling engines in
their new applications. Instead, developers have chosen to develop new modeling engines.
These new mathematical modeling engines are often proprietary and have not undergone the
extensive peer review that is usually required to validate a model. The water-quality simula-
tion community and the municipalities that they work for are willing to rely on these pro-
prietary engines because the applications

• are user friendly and much easier to use due to the advanced user interfaces

• provide sophisticated graphics with real-time simulations that are often desirable for use
in community presentations (High-tech data visualization displays are often used to help
convince the public that the correct choices are being made.)

• are better suited for the newer operating systems and include user support

The EPA recognized that it needed to change its software development approach to meet the
needs of the users and software developers who desire to market products that provide en-
hanced graphical user interfaces (GUIs) and visualization tools but still use standard model-
ing engines. It was felt that a solution to this software dilemma was the adoption of a com-
mercial component specification for building modeling engines. Perhaps ActiveX, Java
Beans, or some other component specification would be adequate. After further investigation,
it was determined that none of the commercial component technologies met the water-quality
community's unique software requirements. This realization resulted in the development of a
customized component specification. It is expected that this new approach will make future
water-quality modeling software reusable and attractive to both end users and software de-

velopers.

CMU/SEI-99-TR-024

CMU/SEI-99-TR-024

2 Introduction

When developing any type of software specification, it is desirable to also build a prototype
implementation that conforms to the specification. The prototype is intended to serve as a
proof of concept that validates the specification. Additionally, the implementation aids in the
refinement of the specification by applying the lessons learned during the development phase.
Typically, the development of a good specification is an iterative process, where the specifi-
cation evolves as a result of modifications to the specification as well as the reference proto-
type. The importance of a prototype implementation can not be overstated. In the past, many
have tried to develop specifications without expending the additional resources required for a
prototype implementation, and these efforts have often resulted in specifications that can not
be implemented or are unacceptable to the community that they were intended to serve.

Naturally, we recognized that the successful development of a component specification
would require a prototype implementation. This prototype included the development of sam-
ple components that conform to the initial component specification and an integration
framework application to test and exercise the components. We decided that the integration
framework should be generic and not component specific. This decision resulted in a generic
component integration framework that can be viewed as a visual programming environment
(VPE) or meta-application for building applications from components. We felt that if the
components worked well in a very generic application, then the components would probably
work well in a custom-built modeling application.

This document contains the programmer's guide for the first iteration of the custom compo-
nent model that was developed. It describes the details of the component model along with
the visual programming environment. Using this document, a programmer should be able to
create components for use within the VPE or a custom modeling application.

The rest of this report is organized of as follows: Section 3 describes the motivation behind
the custom component model, while Section 4 describes details of the component model. The
visual programming environment is described in Section 5. Finally, we present our summary

in Section 6.

CMU/SEI-99-TR-024

CMU/SEI-99-TR-024

3 Motivation for the Custom Component
Model

Software development within the water-quality community is much different from develop-
ment in other organizations because most of the software is developed by scientists and engi-
neers with no formal background in computer science. The typical water-quality software
package is written in the FORTRAN programming language using primitive software design
techniques and without the use of any type of coding standards or implementation guidelines.
Given the state of software development within the community, the SEI determined that any
proposed component model had to be simple and easily implemented by a typical software

developer.

Based upon the current water-quality software development practices and the desire to de-
velop reusable software that is attractive to both end users and developers, it was determined
that an acceptable component model must have the following qualities:

• compatible with PC x86 Microsoft Windows - The majority of water-quality modeling
is performed on personal computers using Windows 95, Windows 98, and Windows NT.

• language independent - The component model should allow components to be
developed using different programming languages such as FORTRAN, C, and C++.

• ability to support introspection - Components should be capable of providing
information that describes itself at runtime.

• usable to both naive end users and application developers - Components should be
usable by programmers and by end users in some type of visual programming
environment or as an application plug-in.

• no distributed computing support - Components need to support only a single user,
without any remote communication.

• ability to support simulation - The component coordination model needs to support
water-quality simulations.

• ability to contain components from other component frameworks - EPA modeling
components should be able contain components from other component frameworks such
as ActiveX or Borland's Visual Component Library (VCL). Additionally it should be
possible to incorporate EPA components in other component frameworks.

• "simple" application programmer interface (API) and component model - The
component model and API had to be simple due to the nature of most component
developers and end users.

CMU/SEI-99-TR-024

• stimulate component market - The model should encourage the development of
components and stimulate the component market.

• low overhead - The component model must be lightweight to support high-performance
simulations.

Using the above desired component qualities as a guide, an initial component specification to
support components for modeling water quality was developed.

As this specification evolves, it could offer a standard architecture framework for modeling
urban water quality, which could act as a counterbalance to the emergence of a closed, pro-
prietary software solution as a potential de facto industry standard.

It is expected that this specification will prove the feasibility of using a component-based ap-
proach to urban runoff modeling that will

• enable the development of alternative conformant implementations of a standard
component model (i.e., components and infrastructure)

• define an application-specific component model for water-quality modeling

• enable third-party integration of water-quality software components

• facilitate a software component marketplace for water-quality modeling

CMU/SEI-99-TR-024

4 Component Specification

This section describes the custom component specification called "WaterBeans" that was de-
veloped for water-quality modeling components. Although this specification was developed
to support a specific environment, it is still robust enough to be used in many types of appli-

cations.

4.1 Fundamentals
The WaterBeans component model is quite different when compared to other component
models such as the Visual Component Library (VCL), Java Beans, or ActiveX. The Water-
Beans component model is based upon the following concepts:

• The component model is intended to support components such as computational engines,
graphical data visualization interfaces, and data input and management interfaces. These
types of components can be viewed as being on the level of a plug-in. This component
model is not suited for low-level components such as buttons, graphs, etc.

• Components export only a standard set of functions. These functions make a standard
component interface. Most component models allow developers to define their own
methods, which results in component-specific APIs as well as the semantics that go along
with them.

• Communication with the component is achieved through streams-oriented input and
output interfaces. A component may export up to 32 separate input interfaces and output
interfaces. Each interface is strongly typed and must adhere to a developer-defined data-
interface specification. This approach is quite uncommon with the commercial
component models, where data exchange and control are achieved through component-
specific methods.

• The component model supports developer-defined properties and developer-defined
property editors. Properties are similar to variables. An application at runtime can read
the value of a property and change the value of the property if it is writeable. Properties
allow a component to be customized at runtime and provide important information to an
application.

The following property types are supported:

- ASCII string
- 32-bit integer
- 32-bit float
- Boolean

• A component can describe itself at runtime to an application. Introspection functions
allow an application to determine the following information about a component at
runtime:

CMU/SEI-99-TR-024

- description of a component

- detailed information about each input/output interface of the component

- detailed information about each property that the component exports

• The component coordination/execution model is based upon data-driven semantics.

• The component supports user-defined graphical displays.

• The component is intended for use with Microsoft Windows (WIN32) systems such as
Windows 95, Windows 98, and Windows NT.

A component is physically represented as a dynamic load library (commonly referred to as a
DLL). Each component is required to export the standard set of functions commonly referred
to as a component interface. The developer's conformance to the component specification is
what separates a component from a DLL. The appendix contains the header file to define or
use a WaterBeans component within the C programming language.

An application must load components using runtime-dynamic linking. In runtime-dynamic

linking, the application loads a component using Microsoft® Windows® LoadLibraryQ func-
tion. Next, the application calls the Microsoft® Windows® GetProcAddress(), which returns a
function pointer for the specified function.

4.2 Common Data Types
Each component must declare the data types and defined values that are shown in Table 1.
This information is for use in the standard set of exported component functions.

Defined Data Types and Constants Description

enum TCPropertyTypes
{ptString=0,ptFloat=l,ptlnteger=2,ptBool=3
};

Enumerated list of property
types that can be exported
by a component

#define COMPFALSE 0 Value of false for the
CompBool data type

#define COMPTRUE 1 Value of true for the
CompBool data type

typedef void * Tcomponentlnstance; Pointer to an instance of a
component

typedef int CompBool; Boolean value

typedef void * TParentWindow; Pointer to the parent win-
dow of a component

Table 1: Common Data Types and Constants

CMU/SEI-99-TR-024

4.3 Exported Functions
Each component must export the standard set of functions. These functions can be grouped

into the following categories:

introspection

data transfer

persistence

property manipulation

control

4.3.1 Introspection
4.3.1.1 GetComponentlnfo
The GetComponentlnfo function retrieves general information about the component.
Typically, this information is needed by an application immediately after a component is

loaded.

Export Definition

extern "C" declspec(dllexport)
TComponentlnfo * stdcall GetComponentlnfo (void) ;

Parameters

None

Return Values

If the function succeeds, the return value is a pointer to the structure TComponentlnf o
shown in Figure 1.

If the function fails, the return value is NULL.

typedef struct
{
char * Name;
char * Category;
char * Hint;
char * VendorName;
char * VendorContactNumher;
char * VendorWebAddr;
char * IconResourceName;
int MajorVersion;
int MinorVersion;
int Numlnputs;
int NumOutputs;
CompBool PropertyEditor;
CompBool OutputDisplay;
CompBool Runable;

} TComponentlnfo;

Figure 1: TComponentlnfo Structure

CMU/SEI-99-TR-024

The definition of each field in the TComponentlnfo structure is shown in Table 2.

Field Definition

Category An ASCII string that describes the category of the component. Compo-
nents are grouped into categories that are somewhat ad hoc in nature
and are defined by the component designer. An example component
category could be "Hydraulic Modeling Engines" to indicate that the
component is of a particular type.

Name An ASCII string that indicates the name of the component. This name
should be descriptive enough for the user to recognize it from other

components. Different components can not have the same name and
category.

Hint An ASCII string to provide amplifying information about the compo-

nent. This information is intended for use in visual environments.

VendorName An ASCII string that indicates the component developer.

VendorContact-
Number

An ASCII string that indicates the telephone number of the component
developer.

IconResource-
Name

An ASH string that identifies the resource name of the icon embedded
in the component. An icon is a graphical representation of the compo-
nent for use in a visual environment.

Maj orVersion A 32-bit integer that represents the major version number of the com-
ponent.

MinorVersion A 32-bit integer that represents the minor version number of the com-
ponent.

Numlnputs A 32-bit integer that represents the number of input interfaces. Each
input interface is defined by its name and type.

NumOutputs A 32-bit integer that represents the number of output interfaces. Each
output interface is defined by its name and type.

Property-Editor A Boolean that indicates the presence of a graphical property editor.

OutputDisplay A Boolean that indicates the presence of a graphical output display.

Runable A Boolean that indicates if the component has an execute function.
Some components may compute data on demand only through a data
request on an interface. This type of interface is called a passive inter-
face.

Table 2: Description of TComponentlnfo Fields

10 CMU/SEI-99-TR-024

4.3.1.2 Getlnputlnfo and GetOutputlnfo

Getlnputlnf o () and GetOutputlnfo () provide information that describes a par-

ticular interface. Each interface has a data type and name associated with it.

Export Definition

extern "C" declspec(dllexport)
TlOInfo * stdcall Getlnputlnfo(

int Interfaceindex);

And

extern "C" declspec(dllexport)
TlOInfo * stdcall GetOutputlnfo(

int Interfaceindex);

Parameters

Interfaceindex: The index number of the input or output interface. This index can be
determined through the function call GetComponentlnf o () where the value of fields
Numlnputs and NumOutput are returned in the reference to the TGetComponentlnf o
structure. The indexes are zero-based; that is, the first interface has an index of zero, the next

has an index of one, and so on.

Return Values

If the function succeeds, the return value is a pointer to the structure TlOInfo shown in

Figure 2.

If the function fails, the return value is NULL.

typedef struct
{
char * InterfaceName;
char * InterfaceType;
CompBool Required;
CompBool Active;

} TlOInfo;

Figure 2: TlOInfo Structure

The definition of each field in the TlOInfo structure is shown in Table 3.

CMU/SEI-99-TR-024 11

Field Description

InterfaceName An ASCII string that represents the name of
the interface.

InterfaceType An ASCII string that represents the particular
type of data that passed over the interface.

Required A Boolean that indicates if the data are re-
quired or optional for proper execution of the
component. This field typically pertains only

to input interfaces.

Active A Boolean that indicates if the interface is
active or passive. This field pertains only to
output interfaces.

Table 3: Description of TlOlnfo Fields

4.3.1.3 GetNumPropertiesC

The function call GetNumPropertiesC () returns the number of properties exported by
the component.

Export Definition
extern "C" declspec(dllexport)
int stdcall GetNumPropertiesC(

TComponentlnstance Instance);

Parameters

Instance: Particular instance of the component. This function can be called only after the
GetNewInstance () function.

Return Values

If the function succeeds, the return value is the number of properties exported by the compo-
nent.

If the function fails, the return value is less than zero.

4.3.1.4 GetPropertyDescriptionC

The function call GetPropertyDescriptionC () returns information about a particular
component property.

12 CMU/SEI-99-TR-024

Export Definition
extern "C" dec1spec(dllexport)
int stdcall GetPropertyDescriptionC(

TcomponentInstance Instance,
Int Propertylndex,
TCPropertyDescription * Description);

Parameters

Instance: Instance of the component. This function can be called only after the Get-

Newlnstance () function.

Propertylndex: Index of the particular property. The number of properties is deter-
mined through the GetNumPropertiesC () function. The indexes are zero-based; that is,

the first property has an index of zero, the next has an index of one, and so on.

Description: A pointer to a TCPropertyDescription structure shown in Figure 3. This

structure is filled upon successful completion of the function call.

typedef struct
{
char Name[256];
TCPropertyTypes Type;
CompBool Readonly;
}TCPropertyDescription;

Figure 3: TCPropertyDescription Structure

The definition of each field in the TCPropertyDescription structure is shown in

Table 4.

Field Definition

Name An ASCII string that indicates the name of the property. Property names have
a maximum length of 255 characters.

Type An enumerated field that indicates that type of the property (integer, string,
etc.). See Table 1 for more information.

Readonly A Boolean field that indicates if the property is changeable.

Table 4: Definition of TCPropertyDescription Fields

4.3.2 Data Transfer
Data communication with a component is achieved through a component-defined streams
interface where each interface is strongly typed. There are two types of output interfaces and
one type of input interface. The first type of output interface is called a passive interface,
where the component provides data as it is requested on the interface. For the requestor of the

data, it is similar to reading an input file in which the component supplies the data only as it

CMU/SEI-99-TR-024 13

is requested. The second type of output interface is known as an active interface where data
are generated by the component as it executes via the Execute () function. In this case, the
data are accumulating for the reader. Input interfaces have read request just like any other
stream interface.

4.3.2.1 SetlnputCallBack and SetOutputCallBack

The SetlnputCallBack and the SetOutputCallBack functions are used to specify
the function to be called to get input data or put output data on a particular interface. Addi-
tionally, the SetOutputCallBack function is used only for the active type of output in-
terfaces.

Export Definition
extern "C" declspec(dllexport)
int stdcall SetlnputCallBack(

Tcomponentlnstance Instance,
int Interfaceindex,
TGetorPutDataCBInfo* GetorPutDataCB);

And

extern nC" dec1spec(dllexport)
int stdcall SetOutputCallBack(

Tcomponentlnstance Instance,
int Interfaceindex,

TGetorPutDataCBInfo* GetorPutDataCB);

Parameters

Instance: Particular instance of the component. This function can be called only after the
TGetNewInstance () function.

Interfaceindex: Index number of the interface. The number of input and output inter-
faces is determined through the function call GetComponentlnf o () . The values of Nu-
mlnputs and NumOutput s indicate the number of input and output interfaces. The in-
dexes are zero-based; that is, the first interface has an index of zero, the next has an index of
one, and so on.

GetorPutDataCB: A pointer to a callback information structure (TGetorPutDa-
taCBInfo) that specifies the callback used to input data or output data. The structure of the
TGetorPutDataCBInfo is shown in Figure 4.

typedef struct
{
TGetorPutData CallBack;
Tcomponentlnstance CBInstance;

} TGetorPutDataCBInfo;

Figure 4: TGetorPutDataCBInfo Structure

14 CMU/SEI-99-TR-024

TGetorPutDataCBInfo Structure Fields

Callback: A pointer to the callback function that is defined as the following type:

typedef int stdcall (*TGetorPutData)(
Tcomponentlnstance Instance,
unsigned char * Buffer,
int Length);

Callback Parameters

Instance: This is set to the value of CBInstance defined in the TGetorPutDa-
taCBInfo structure.

Buffer: A pointer to the buffer that is to be filled with data or output.

Length: Length of the buffer to be filled or written.

Callback Return Value

If the callback function succeeds, the value returned is the actual number of bytes read or

written.

If the callback function fails, the return value is less than or equal to zero.

Return Value

If the function succeeds, the return value is zero.

If the function fails, the return value is nonzero.

4.3.2.2 GetPassivelnputCallBack
The GetPassivelnputCallBack () function returns a pointer to the input function of a
passive output interface. Output data from this interface are then obtained using this function.

This function is used only with passive outputs.

CMU/SEI-99-TR-024 15

Export Definition

extern "C" declspec(dllexport)
int stdcall GetPassiveInputCallBack(

TcomponentInstance Instance,
int Interfaceindex,
TGetorPutDataCBInfo * GetDataDB);

Parameters

Instance: Particular instance of a component. This function can be called only after the
TGetNewInstance () function.

Interfaceindex: Index number of the interface. The number of input and output inter-

faces is determined through the function call GetComponentlnf o () .The values of Nu-

mlnputs and NumOutputs indicate the number of input and output interfaces. The in-

dexes are zero-based; that is, the first interface has an index of zero, the next has an index of
one, and so on.

GetorPutDataCB: A pointer to the callback information structure (TGetorPutDa-
taCBInfo) . This structure is filled upon successful completion of the operation. It then
specifies the callback to be used to obtain the input data from a passive output interface. The
structure of the TGetorPutDataCBInfo is shown in Figure 4.

TGetorPutDataCBInfo Structure Fields

Cal lback: A pointer to the callback function that is defined as the following type:

typedef int stdcall (*TGetorPutData)(
Tcomponentlnstance Instance,
unsigned char * Buffer,
int Length);

Callback Parameters

Instance: This is set to the value of CBInstance defined in the TGetorPutDa-
taCBInfo structure.

Bu f f er: A pointer to the buffer to be filled.

Length: The length of the buffer.

Callback Return Value

If the callback function succeeds, the value returned is the actual number of bytes read or
written.

If the callback function fails, the return value is less than or equal to zero.

16 CMU/SEI-99-TR-024

Return Value

If the function succeeds, the return value is zero.

If the function fails, the return value is nonzero.

4.3.2.3 GetlnputRun Requirements
The GetlnputRunRequirements () function returns the input interfaces that will re-
quire data for the next execution step of a component instance. This function should be called
before calling the components Execute() function, described in Section 4.3.5.2. This func-
tion returns the input interface that must have data available.

Export Definition

extern nCn declspec(dllexport)
unsigned int stdcall GetlnputRunRequirements(

Tcomponentlnstance Instance);

Parameters

Instance: Particular instance of a component. This function can be called only after the
GetNewInstanceO function.

Return Value

This function returns a bit string indicating the interfaces that will require input data. Bits 0
through 31 map directly to input interfaces 0 through 31 respectively.

4.3.3 Persistence
Persistence provides the ability to save and restore the state of a component. The persistence
model requires only the two operations GetPersistence () and PutPersistence ().

4.3.3.1 GetPersistence
The GetPersistence function returns a buffer filled with the persistence data for an instance of
a component. Persistence data include the value of each property that the component exports
and the component's state data. A NULL buffer pointer will cause this function to return the
actual number of bytes required to store the persistence data.

CMU/SEI-99-TR-024 17

Export Definition
extern "C" declspec(dllexport)
int stdcall GetPersistence(

Tcomponentlnstance Instance,
unsigned char * Buffer,
int Length);

Parameters

Instance: Particular instance of the component.

Buffer: A pointer to the buffer to be filled with the persistence data. A NULL pointer will
return the actual number of bytes required to store the persistence data.

Length: The length of the buffer.

Return Value

If the function succeeds and the buffer pointer was non-zero, the return value is the actual
number of bytes placed into the buffer

If the function succeeds and the buffer pointer was NULL, the return value is the size of the
persistence data in bytes.

If the function fails, the return value is less than zero.

4.3.3.2 PutPersistence

The PutPersistence () function restores a component's state from the supplied persis-
tence data.

Export Definition
extern "Cn declspec(dllexport)
int stdcall PutPersistence(

Tcomponentlnstance Instance,
unsigned char * Buffer,
int Length);

Parameters

Instance: Particular instance of the component.

Buf f er: A pointer to the persistence data.

Length: The size of the persistence data in bytes.

Return Value

If the function succeeds, the return value is the actual number of bytes used to restore the
state of the component.

If the function fails, the return value is less than zero.

18 CMU/SEI-99-TR-024

4.3.4 Property Manipulation
The functions in this section provide the capability to read and write properties both pro-
grammatically and through a component GUI interface when available.

4.3.4.1 GetPropertyC
The GetPropertyC () function returns the current value of a property.

Exported Definition
extern "C" declspec(dllexport)
int stdcall GetPropertyC(

Tcomponentlnstance Instance,
int Propertylndex,
TCPropertyValue * Value);

Parameters

Instance: Particular instance of the component.

Propertylndex: Index number of the particular property. The number of properties is
determined through the GetNumPropertiesC () function. The indexes are zero-based;
that is, the first property has an index of zero, the next has an index of one, and so on.

Value: Pointer to a TCPropertyValue structure that is set to the value of the property upon
successful completion of the function call. The format of the TCPropertyValue structure
is shown in Figure 5.

typedef struct
{
TCPropertyTypes Type;
union
{
char StringValue[256];
int IntegerValue;
int BoolValue;
float FloatValue;

} Value;
} TCPropertyValue ;

Figure 5: TCPropertyValue Structure

The definition of each field in the TCPropertyValue structure is shown in Table 5.

CMU/SEI-99-TR-024 19

Field

Type

Value

StringValue

IntegerValue

BoolValue

FloatValue

Definition

An enumerated field that indicates the type
of the property such as integer, string, etc.
See Table 1 for more information. This value
is used to determine the correct reference
from the union field.

A union used to access all valid property
types.

Union value used to represent a string. A

string property can not be greater then 255
bytes.

Union value used to represent an integer.

Union value used to represent a Boolean.

Union value used to represent a floating
point number.

Table 5: Description of TCPropertyValue Fields

Return Value

If the function succeeds, the return value is zero.

If the function fails, the return value is nonzero.

4.3.4.2 SetPropertyC

The SetPropertyC () function sets the value of a property.

Exported Definition
extern "C" dec1spec(dllexport)
int stdcall SetPropertyC(

Tcomponentlnstance Instance,
int Propertylndex,
TCPropertyValue * Value);

20 CMU/SEI-99-TR-024

Parameters

Instance: Particular instance of the component.

Propertylndex: Index number of the particular property. The number of properties is
determined through the GetNumPropertiesC () function. The indexes are zero-based;

that is, the first property has an index of zero, the next has an index of one, and so on.

Value: Pointers to a TCPropertyValue structure that contains the new value of the property.
For more information about the TCPropertyValue structure, see Figure 5 and Table 5.

Return Value

If the function succeeds, the return value is zero.

If the function fails, the return value is nonzero

4.3.4.3 PropertyEditor
A component may export the graphical user interface to manipulate component properties. If
this interface exists, the value of the PropertyEditor field of the TComponentlnf o
structure returned from the GetComponentlnf o () function shall be set to true. The
PropertyEditor () function shall make the graphical property editor visible on the

display.

Exported Definition
extern "C" dec1spec(dllexport)
int stdcall PropertyEditor(

Tcomponentlnstance Instance);

Parameters

Instance: Particular instance of the component.

Return Value

If the function succeeds, the return value is zero.

If the function fails, the return value is nonzero.

4.3.5 Control
The functions in this section provide the capability to initialize a component, create and de-
lete an instance of a component, track the state a component's properties, and control a com-

ponent's execution and displays.

CMU/SEI-99-TR-024 21

4.3.5.1 Initialize
The Initialize () function sets the state of a component instance to its initial state as if
it was just created.

Export Definition
extern "C" declspec(dllexport)
int stdcall Initialize(

Tcomponentlnstance Instance);

Parameters

Instance: Particular instance of the component.

Return Value

If the function succeeds, the return value is zero.

If the function fails, the return value is nonzero.

4.3.5.2 Execute
The Execute () function executes one computational step of the component.

Export Definition
extern "C" declspec(dllexport)
int stdcall Execute(

Tcomponentlnstance Instance);

Parameters

Instance: Particular instance of the component.

Return Value

If the function succeeds, the return value is zero.

If the function fails, the return value is nonzero.

4.3.5.3 SetPropertyChangedCBC
This function is used to specify the callback that is used to notify the application that the
value of a property has changed via the Property Editor.

Export Definition
extern "C" declspec(dllexport)
int stdcall SetPropertyChangedCBC(

Tcomponentlnstance Instance,
TPropertyChangedCBInfo * Callback);

22 CMU/SEI-99-TR-024

Parameters

Instance: Particular instance of the component.

Callback: Pointer to a TPropertyChangedCBInfo structure that contains the call-

back information. This structure shown in Figure 6.

typedef struct
{
TPropertyChangedC CallBack;
TComponentlnstance Instance;

} TPropertyChangedCBInfo;

Figure 6: TPropertyChangedCBInfo Structure

TPropertyChangedCBInfo Structure Fields

Callback: A pointer to the callback function that is defined as the following type:

typedef int stdcall (*TPropertyChangedC)(
Tcomponentlnstance Instance,
Int Propertylndex,
TCPropertyValue * Value);

Callback Parameters

Instance: This is set to the value of CBInstance defined in the TPropertyChanged-

CBInfo structure.

Propertylndex: Index of the property that has been changed.

Value: Pointer to the new value of the property.

Callback Return Value

If the callback function succeeds, the value returned is the actual number of bytes read or

written.

If the callback function fails, the return value is less than or equal to zero.

Return Value

If the function succeeds, the return value is zero.

If the function fails, the return value is nonzero.

4.3.5.4 GetNewlnstance
The GetNewlnstance () function creates a new instance of a component.

CMU/SEI-99-TR-024 23

Export Definition
extern "C" declspec(dllexport)
Tcomponentlnstance stdcall GetNewInstance(

TParentWindow ParentWindow);

Parameters

ParentWindow: Handle of the parent window.

Return Value

If the function succeeds, the return value is a nonzero value representing the new instance.

If the function fails, the return value is NULL.

4.3.5.5 Deletelnstance
The Deletelnstance () function deletes an instance of a component.

Export Definition

extern "C" declspec(dllexport)

int stdcall Deletelnstance(
Tcomponentlnstance Instance);

Parameters

Instance: Particular instance of the component.

Return Value

If the function succeeds, the return value is zero.

If the function fails, the return value is nonzero.

4.3.5.6 Display
The function Display() shall cause a component's graphical display to be visible.

Export Definition
extern "C" declspec(dllexport)
int stdcall Display(

Tcomponentlnstance Instance);

24 CMU/SEI-99-TR-024

Parameters

Instance: Particular instance of the component.

Return Value

If the function succeeds, the return value is zero.

If the function fails, the return value is nonzero.

CMU/SEI-99-TR-024 25

26 CMU/SEI-99-TR-024

5 Visual Programming Environment

Based on the component specification, a meta-application, which is a VPE for building appli-
cations from components (in this case, other urban runoff applications), has been developed
for using WaterBeans components. This VPE enables engines and other components to be
plugged in and to work together. The WaterBeans specification defines how components,
such as engines, are integrated through their interfaces. As long as components conform to
these specifications, they can be plugged into the VPE and used with other components that
comply with the specification.

As a result, the VPE does not know what the components actually do. The components will
use their own algorithms and produce a set of results. These results are passed by the VPE
either to another engine that will do additional work on them, to a graphics analyzer that will
produce a chart of their results, or to a database that will store the results.

Components can consist of engines re-implemented from current applications, future engines
to be built, output analyzers, or graphic displays. Components can come from different do-
mains or have different levels of granularity. Thus, the VPE can represent a foundation for
combining modeling software from different applications.

The current VPE implementation enables components to work together and produce results.
Currently, WaterBeans is implemented within urban sewer modeling, and several components
derived from SewerCAT1 work within WaterBeans.

The WaterBeans VPE is an architecture framework that conforms to the constraints of the
software architecture and demonstrates the application of component-based integration to
water-quality modeling. The scope of this proof-of-concept demonstration is urban loading

models.

Figure 7 depicts an annotated screen shot of the WaterBeans interface. The regions of this
interface correspond to capabilities discussed in the remainder of this section.

1 SewerCat is an application developed by Reid Crowther for modeling dynamics of sewer networks.

CMU/SEI-99-TR-024 27

® Composer
Tool Functions

■ JIIIUI»! MJ.3-*
l£te g<tt)frirt Bun Evmnxi tt*

©Component
implementation of
a selected type

J.

© Grouping of
components by type

Si

|RUNSTDYEng™1:RUNSTDYEng«>e

©Component _ —f
Properties —I

Hy*«fcMc*tng

nuNsrorEr^n».,:
KB fM#Ä<Jl

Opfar

Vtotto

Phme

um.' i
UqcfVeran

jsTDYEnonel

] Rad (Wto Ccreuhis,

Bfjg aw-Taa

j »wmiMi«öwäw com

"il2Ö ~ ~~^
MnxVenJon . 1

Uircufi nn
»OuWti M

© Component Inspector © Components used in
application being composed

Figure 7: WaterBeans Visual Composer

Several categories of components are supported by WaterBeans (©), including engines,2 out-
put visualization, data management, and data translators. Within each category there will be
two or more interchangeable implementations (©). For example, RUNSTEADY and Super-
link will be provided as engine components (© and © are referred to as a "component pal-
ette"). Urban runoff applications can be developed using a visual programming metaphor
within the application canvas ((D): selected components (©) are composed (integrated)
through the use of different kinds of component connectors (©). The component inspector
(©) provides an interface to a component's application programming interfaces (APIs) and
component-specific properties (®).4 The overall functionality of WaterBeans is available
through a menu-based and "quick-access" interface (®).

To clearly differentiated the architecture framework (i.e., the WaterBeans implementation)
from the architectural style, the components used in the WaterBeans demonstration have been
reused in Reid Crowther's SewerCat. This demonstrates that WaterBeans is based upon an
open software architecture, and that WaterBeans and SewerCat are both simply conformant
implementations of this software architectural style. This is a crucially important point of the
proof of concept, and it distinguishes the WaterBeans proof of concept from all of the avail-
able "point-to-point" integrated applications currently in use.

Engines are components that implement numerical solvers for mathematical equations. These solvers
are referred to as "engines" because they frequently "drive" the simulation process.

RUNSTEADY and Superlink are computational engines from the SewerCat application.
Component-specific properties can be modified from the component inspector interface.

28 CMU/SEI-99-TR-024

6 Summary

WaterBeans proves the feasibility of using a component-based approach to urban runoff

modeling that will

• define an application-specific component model for water-quality modeling

• enable the development of alternative conformant implementations of the standard
component model (i.e., components and component framework)

enable third-party integration of water-quality software components

• facilitate a software component marketplace for water-quality modeling

WaterBeans demonstrates in a highly visible way the feasibility of achieving these benefits.
Rather than being an application for constructing and analyzing urban runoff models, Water-
Beans is an application for building urban runoff applications from urban runoff components.
The WaterBeans meta-application demonstrates the following two complementary capabili-
ties that prove the feasibility and benefits of a component-based approach for urban water-

quality modeling:

1. Third-party integrators can build new urban water-quality modeling applications through
a compositional style of development, in which applications are implemented as a
composition of software components. WaterBeans provides the build-time services to
support compositional development and the runtime services to support inter-component
coordination.

2. Third-party integrators can extend WaterBeans by importing alternative implementations
of defined component types. Third-party integrators can also extend WaterBeans by
defining new component types, although these new types must conform to the
constraints defined by the architecture and be implemented by the WaterBeans
framework.

The first capability described above demonstrates the use of component technology to reduce
the complexity of application development drastically, but, ultimately, it is the second capa-
bility that has the largest impact on the water-quality community. This second capability
(which is the consequence of defining a standard component model for urban runoff applica-
tions) will establish an open environment for water-quality scientists, component developers,

application developers, water-quality modelers, and design engineers.

CMU/SEI-99-TR-024 29

The WaterBeans component specification and prototype demonstrate the utility of a standard
component model for urban-loading models. However, the scope of the standard in the pro-
totype is limited to engine components. The other categories of components—data manage-
ment, output visualization, and data translators—have not received the care required to make

an assertion that they have standard interfaces. This may be a desirable generalization of
WaterBeans.

30 CMU/SEI-99-TR-024

Appendix: Component Header File

//

#ifndef DLLSpecH

#define DLLSpecH

//

#define COMPTRUE 1

»define COMPFALSE 0

typedef void * TComponentlnstance;

typedef int CompBool;

typedef void * TParentWindow;

enum TCPropertyTypes {ptString,ptFloat,ptInteger,ptBool};

typedef struct

{

TCPropertyTypes Type;

union

{

char StringValue[256];

int IntegerValue;

int BoolValue;

float FloatValue;

} Value;

} TCPropertyValue;

typedef struct

{

char Name[256];

TCPropertyTypes Type;

CompBool Readonly;

}TCPropertyDescription;

typedef struct

{

char * Name;

char * Category;

char * Hint;

CMU/SEI-99-TR-024 31

char * VendorName;

char * VendorContactNumber;

char * VendorWebAddr;

char * IconResourceName;

int MajorVersion;

int MinorVersion;

int Numlnputs;

int NumOutputs;

CompBool PropertyEditor;

CompBool OutputDisplay;

CompBool Runable;

} TComponentlnfo;

typedef struct

{

char * InterfaceName;

char * InterfaceType;

CompBool Required;

CompBool Active;

} TlOInfo;

//Callback Defs

// NULL Buffer returns bytes avail

typedef int

typedef int

typedef int

typedef struct

{

 stdcall (*TGetData)(TComponentlnstance,

unsigned char *,/*Buffer */

int /»Length */) ,-

 stdcall (*TPutData)(TComponentlnstance,

unsigned char *,/*Buffer */

int /*Length */);

 stdcall (*TPropertyChangedC) (TComponentlnstance,

int Idx,

TCPropertyValue *);

CallBack; TPutData

TComponentlnstance Instance;

} TPutDataCBInfo;

typedef struct

{

TGetData CallBack;

TComponentlnstance Instance;

32 CMU/SEI-99-TR-024

} TGetDataCBInfo;

typedef struct

{

TPropertyChangedC CallBack;

TComponentlnstance Instance;

} TPropertyChangedCBInfo;

#ifndef DLL_EXPORT

// Exported Functions

typedef TComponentlnfo

typedef TComponentlnstance

typedef int

typedef int

typedef int

typedef TlOInfo

typedef TlOInfo

typedef int

typedef int

typedef unsigned int

typedef int

typedef int

typedef int

typedef int

typedef int

typedef int

typedef int

typedef int

typedef int

_stdcall (*TGetComponentInfo)(void);

_stdcall (*TGetNewInstance)(TParentWindow);

_stdcall (*TDeleteInstance)(TComponentlnstance);

_stdcall (*TInitialize)(TComponentlnstance);

_stdcall (*TExecute)(TComponentlnstance);

_stdcall (*TGetInputInfo)(int);

_stdcall (*TGetOutputInfo)(int);

_stdcall (*TSetInputCallBack) (TComponentlnstance,

int,TGetDataCBInfo *);

_stdcall (*TSetOutputCallBack)(TComponentlnstance,

int,TPutDataCBInfo *);

_stdcall (*TGetInputRunRequirements)

(TComponentlnstance);

_stdcall (*TGetPassiveInputCallBack)

(TComponentlnstance,int,

TGetDataCBInfo *);

_stdcall (*TGetPersistence)

(TComponentlnstance,unsigned char *,int);

_stdcall (*TPutPersistence)

(TComponentlnstance,unsigned char *,int);

_stdcall (*TCPropertyEditor)(TComponentlnstance);

_stdcall (*TDisplay)(TComponentlnstance);

_stdcall (*TGetNumPropertiesC)(TComponentlnstance);

_stdcall (*TGetPropertyDescriptionC)(

TComponentlnstance,

int,

TCPropertyDescription *);

_stdcall (*TSetPropertyC)(TComponentlnstance,

int,

TCPropertyValue *);

_stdcall (*TGetPropertyC)(TComponentlnstance,

int,

TCPropertyValue *);

CMU/SEI-99-TR-024 33

typedef int stdcall (*TSetPropertyChangedCBC)(

TComponentlnstance,

TPropertyChangedCBInfo *);

«define PROCADDR_GETCOMPONENTINFO(Inst) \

(TGetComponentlnfo) GetProcAddress(Inst,"GetComponentlnfo")

#define PROCADDR_GETNEWINSTANCE(Inst) \

(TGetNewInstance) GetProcAddress(Inst,"GetNewInstance")

#define PROCADDR_DELETEINSTANCE(Inst) \

(TDeletelnstance) GetProcAddress(Inst,"Deletelnstance")

#define PROCADDR_INITIALIZE(Inst) \

(TInitialize) GetProcAddress(Inst,"Initialize")

«define PROCADDR_EXECUTE(Inst) \

(TExecute) GetProcAddress(Inst,"Execute")

«define PROCADDR_GETINPUTINFO(Inst) \

(TGetlnputlnfo) GetProcAddress(Inst,"Getlnputlnfo")

«define PROCADDR_GETOUTPUTINFO(Inst) \

(TGetOutputlnfo) GetProcAddress(Inst,"GetOutputlnfo")

«define PROCADDR_SETINPUTCALLBACK(Inst) \

(TSetlnputCallBack) GetProcAddress(Inst,"SetlnputCallBack")

«define PROCADDR_SETOUTPUTCALLBACK(Inst) \

(TSetOutputCallBack) GetProcAddress(Inst,"SetOutputCallBack")

«define PROCADDR_GETINPUTRUNREQUIREMENTS (Inst) \

(TGetlnputRunRequirements) GetProcAddress(Inst,"GetlnputRunRequirements")

«define PROCADDR_GETPASSIVECALLBACK(Inst) \

(TGetPassivelnputCallBack) GetProcAddress(Inst,"GetPassivelnputCallBack")

«define PROCADDR_GETPERSISTENCE(Inst) \

(TGetPersistence) GetProcAddress(Inst,"GetPersistence")

«define PROCADDR_PUTPERSISTENCE(Inst) \

(TPutPersistence) GetProcAddress(Inst,"PutPersistence")

34 CMU/SEI-99-TR-024

«define PROCADDR_PROPERTYEDITOR(Inst) \

(TCPropertyEditor) GetProcAddress(Inst,"PropertyEditor")

#define PROCADDR_DISPLAY(Inst) \

(TDisplay) GetProcAddress(Inst,"Display")

«define PROCADDR_GETNUMPROPERTIESC(Inst) \

(TGetNumPropertiesC) GetProcAddress(Inst,"GetNumPropertiesC");

«define PROCADDR_GETPROPERTYDESCRIPTIONC(Inst) \

(TGetPropertyDescriptionC) GetProcAddress(Inst,"GetPropertyDescriptionC"

«define PROCADDR_SETPROPERTYC(Inst) \

(TSetPropertyC) GetProcAddress(Inst,"SetPropertyC");

«define PROCADDR_GETPROPERTYC(Inst) \

(TGetPropertyC) GetProcAddress(Inst,"GetPropertyC");

«define PROCADDR_SETPROPERTYCHANGEDCBC(Inst) \

(TSetPropertyChangedCBC) GetProcAddress(Inst,"SetPropertyChangedCBC");

«else

extern "C" declspec(dllexport) TComponentlnfo *

 stdcall GetComponentlnfo(void);

extern "C" declspec(dllexport) TComponentlnstance

 stdcall GetNewInstance(TParentWindow);

extern "C" declspec(dllexport) int

 stdcall Deletelnstance(TComponentlnstance);

extern "C" declspec(dllexport) int

 stdcall Initialize(TComponentlnstance);

extern "C" declspec(dllexport) int

 stdcall Execute(TComponentlnstance);

extern "C" declspec(dllexport) TlOInfo *

 stdcall Getlnputlnfo(int);

extern "C" declspec(dllexport) TlOInfo *

 stdcall GetOutputlnfo(int);

extern "C" declspec(dllexport) int

 stdcall SetlnputCallBack(TComponentlnstance,int,

TGetDataCBInfo *);

extern "C" declspec(dllexport) int

 stdcall SetOutputCallBack(TComponentInstance,int,

TPutDataCBInfo *);

extern "C" declspec(dllexport) unsigned int

 stdcall GetlnputRunRequirements(TComponentlnstance);

CMU/SEI-99-TR-024 35

extern "C" declspec(dllexport) int

 stdcall GetPassiveInputCallBack(TComponentInstance,int,

TGetDataCBInfo *);

extern "C" declspec(dllexport) int

 stdcall GetPersistence(TComponentlnstance,

unsigned char *,int);

extern "C" declspec(dllexport) int

 stdcall PutPersistence(TComponentlnstance,

unsigned char *,int);

extern "C" declspec(dllexport) int

 stdcall PropertyEditor(TComponentlnstance) ;

extern "C" declspec(dllexport) int

 stdcall Display(TComponentlnstance);

extern "C" declspec(dllexport) int

__stdcall GetNumPropertiesC(TComponentlnstance);

extern "C" declspec(dllexport) int

 stdcall GetPropertyDescriptionC(TComponentlnstance,

int,

TCPropertyDescription *),

extern "C" declspec(dllexport) int

 stdcall SetPropertyC(TComponentlnstance,

int,

TCPropertyValue *);

extern "C" declspec(dllexport) int

 stdcall GetPropertyC(TComponentlnstance,

int,

TCPropertyValue *);

extern "C" declspec(dllexport) int

 stdcall SetPropertyChangedCBC(TComponentlnstance,

TPropertyChangedCBInfo *);

#endif

//

#endif

//

36 CMU/SEI-99-TR-024

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and main-
taining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including sug-
gestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Proiect (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE
December 1999

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Builder's Guide for WaterBeans Components
5. FUNDING NUMBERS

C —F19628-95-C-0003
6. AUTHOR(S)

Daniel Plakosh, Dennis Smith, Kurt C. Wallnau

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-99-TR-024

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731 -2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
EAS-TR-99-024

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

WaterBeans is a proof-of-feasibility system for building software applications through a process of assembling (composing) prefabri-
cated software components. WaterBeans was originally developed as a proof of feasibility that software component technology could
be used to develop software applications in the domain of water-quality modeling. (In particular, WaterBeans supports modeling and
simulating the hydrology of urban storm water sewage and runoff.) WaterBeans includes a component model for component devel-
opers, a visual composition environment for importing and assembling components into applications, and several families of compo-
nents. One family of components supports modeling and simulating urban sewage systems. Another family of components was de-
veloped to prove the generality of WaterBeans; this family of components allows visualization and manipulation of digital
waveforms. This report documents the programming interface for component developers. It also provides a brief description of the
composition environment.

14. SUBJECT TERMS Environmental Protection Agency (EPA), graphical user interface, software 15. NUMBER OF PAGES
36

development, urban runoff modeling, visual programming environment, water-quality modeling 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Proscribed by ANSI Std. 239-18
298-102

